Data Engineering on Microsoft Azure (DP-203T00)

 

Course Overview

In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics.

Who should attend

The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.

Certifications

This course is part of the following Certifications:

Prerequisites

Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.

Specifically completing:

Course Objectives

  • Explore compute and storage options for data engineering workloads in Azure
  • Design and Implement the serving layer
  • Understand data engineering considerations
  • Run interactive queries using serverless SQL pools
  • Explore, transform, and load data into the Data Warehouse using Apache Spark
  • Perform data Exploration and Transformation in Azure Databricks
  • Ingest and load Data into the Data Warehouse
  • Transform Data with Azure Data Factory or Azure Synapse Pipelines
  • Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
  • Optimize Query Performance with Dedicated SQL Pools in Azure Synapse
  • Analyze and Optimize Data Warehouse Storage
  • Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • Perform end-to-end security with Azure Synapse Analytics
  • Perform real-time Stream Processing with Stream Analytics
  • Create a Stream Processing Solution with Event Hubs and Azure Databricks
  • Build reports using Power BI integration with Azure Synapase Analytics
  • Perform Integrated Machine Learning Processes in Azure Synapse Analytics

Course Content

  • Explore compute and storage options for data engineering workloads
  • Design and implement the serving layer
  • Data engineering considerations for source files
  • Run interactive queries using Azure Synapse Analytics serverless SQL pools
  • Explore, transform, and load data into the Data Warehouse using Apache Spark
  • Data exploration and transformation in Azure Databricks
  • Ingest and load data into the data warehouse
  • Transform data with Azure Data Factory or Azure Synapse Pipelines
  • Orchestrate data movement and transformation in Azure Synapse Pipelines
  • Optimize query performance with dedicated SQL pools in Azure Synapse
  • Analyze and Optimize Data Warehouse Storage
  • Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • End-to-end security with Azure Synapse Analytics
  • Real-time Stream Processing with Stream Analytics
  • Create a Stream Processing Solution with Event Hubs and Azure Databricks
  • Build reports using Power BI integration with Azure Synapase Analytics
  • Perform Integrated Machine Learning Processes in Azure Synapse Analytics

Prijs & Delivery methods

Online training

Duur
4 dagen

Prijs
  • 1.995,– €
Klassikale training

Duur
4 dagen

Prijs
  • Nederland: 1.995,– €
  • België: 1.995,– €

Beschikbare data

Fast Lane will carry out all guaranteed training regardless of the number of attendees, exempt from force majeure or other unexpected events, like e.g. accidents or illness of the trainer, which prevent the course from being conducted.
Instructor-led Online Training:   Dit is een Instructor-Led Online (ILO) training: een online training verzorgd door een trainer.
Dit is een FLEX-training: een training die zowel klassikaal als online gevolgd kan worden. Je kiest zelf de gewenste leervorm.

Engels

Tijdzone: Midden-Europese Tijd (MET)   ±1 uur

Online training Dit is een FLEX-training. Tijdzone: Midden-Europese Tijd (MET)
Online training Tijdzone: Greenwich Mean Time (GMT)
Online training Tijdzone: British Summer Time (BST)
Online training Dit is een FLEX-training. Tijdzone: Midden-Europese Zomertijd (MEZT)
Online training Tijdzone: British Summer Time (BST)
Online training Tijdzone: British Summer Time (BST)
Online training Dit is een FLEX-training. Tijdzone: Midden-Europese Zomertijd (MEZT)

3 uur tijdsverschil

Online training Tijdzone: Gulf Standard Time (GST) Gegarandeerde doorgang

6 uur tijdsverschil

Online training Tijdzone: Eastern Standard Time (EST)
Online training Tijdzone: Eastern Standard Time (EST)
Online training Tijdzone: Eastern Standard Time (EST)
Online training Tijdzone: Eastern Daylight Time (EDT)
Online training Tijdzone: Eastern Daylight Time (EDT)
Online training Tijdzone: Eastern Daylight Time (EDT)
Online training Tijdzone: Eastern Daylight Time (EDT)
Online training Tijdzone: Eastern Standard Time (EST)

7 uur tijdsverschil

Online training Tijdzone: Central Standard Time (CST)
Online training Tijdzone: Central Standard Time (CST)
Online training Tijdzone: Eastern Standard Time (EST)
Online training Tijdzone: Eastern Standard Time (EST)
Online training Tijdzone: Eastern Standard Time (EST)
Online training Tijdzone: Central Standard Time (CST)
Online training Tijdzone: Central Standard Time (CST)

8 uur tijdsverschil

Online training Tijdzone: Pacific Daylight Time (PDT)
Online training Tijdzone: Pacific Daylight Time (PDT)

9 uur tijdsverschil

Online training Tijdzone: Pacific Daylight Time (PDT)
Online training Tijdzone: Pacific Daylight Time (PDT)
Dit is een FLEX-training: een training die zowel klassikaal als online gevolgd kan worden. Je kiest zelf de gewenste leervorm.

Nederland

Utrecht Dit is een FLEX-training.   Tijdzone: Midden-Europese Tijd (MET) boek direct:
de online FLEX-training
de klassikale FLEX-training
Utrecht Dit is een FLEX-training.   Tijdzone: Midden-Europese Zomertijd (MEZT) boek direct:
de online FLEX-training
de klassikale FLEX-training
Utrecht Dit is een FLEX-training.   Tijdzone: Midden-Europese Zomertijd (MEZT) boek direct:
de online FLEX-training
de klassikale FLEX-training