Data Parallelism: How to Train Deep Learning Models on Multiple GPUs (DPHTDLM)

 

Course Overview

This workshop teaches you techniques for data-parallel deep learning training on multiple GPUs to shorten the training time required for data-intensive applications. Working with deep learning tools, frameworks, and workflows to perform neural network training, you’ll learn how to decrease model training time by distributing data to multiple GPUs, while retaining the accuracy of training on a single GPU.

Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.

Prerequisites

Experience with deep learning training using Python

Course Objectives

By participating in this workshop, you’ll:

  • Understand how data parallel deep learning training is performed using multiple GPUs
  • Achieve maximum throughput when training, for the best use of multiple GPUs
  • Distribute training to multiple GPUs using Pytorch Distributed Data Parallel
  • Understand and utilize algorithmic considerations specific to multi-GPU training performance and accuracy

Follow On Courses

Prijs & Delivery methods

Online training

Duur
1 dag

Prijs
  • 645,– €
Klassikale training

Duur
1 dag

Prijs
  • Op Aanvraag

Op dit moment is deze training niet beschikbaar in het open rooster. De kans is echter groot dat wij u toch een passende oplossing kunnen bieden. Wij horen graag wat uw specifieke wensen zijn. U bereikt ons via 030 658 2131 of info@flane.nl. We helpen u graag!