Rapid Application Development Using Large Language Models (RADLLM)

 

Course Overview

Recent advancements in both the techniques and accessibility of large language models (LLMs) have opened up unprecedented opportunities for businesses to streamline their operations, decrease expenses, and increase productivity at scale. Enterprises can also use LLM-powered apps to provide innovative and improved services to clients or strengthen customer relationships. For example, enterprises could provide customer support via AI virtual assistants or use sentiment analysis apps to extract valuable customer insights.

In this course, you’ll gain a strong understanding and practical knowledge of LLM application development by exploring the open-sourced ecosystem, including pretrained LLMs, that can help you get started quickly developing LLM-based applications.

Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.

Prerequisites

  • Introductory deep learning, with comfort with PyTorch and transfer learning preferred. Content covered by DLI’s Getting Started with Deep Learning or Fundamentals of Deep Learning courses, or similar experience is sufficient.
  • Intermediate Python experience, including object-oriented programming and libraries. Content covered by Python Tutorial (w3schools.com) or similar experience is sufficient.

Course Objectives

By participating in this workshop, you’ll learn how to:

  • Find, pull in, and experiment with the HuggingFace model repository and the associated transformers API
  • Use encoder models for tasks like semantic analysis, embedding, question-answering, and zero-shot classification
  • Use decoder models to generate sequences like code, unbounded answers, and conversations
  • Use state management and composition techniques to guide LLMs for safe, effective, and accurate conversation

Follow On Courses

Prijs & Delivery methods

Online training

Duur
1 dag

Prijs
  • Op Aanvraag
Klassikale training

Duur
1 dag

Prijs
  • Op Aanvraag

Beschikbare data

Instructor-led Online Training:   Dit is een Instructor-Led Online (ILO) training: een online training verzorgd door een trainer.
Dit is een FLEX-training: een training die zowel klassikaal als online gevolgd kan worden. Je kiest zelf de gewenste leervorm.

Engels

9 uur tijdsverschil

Online training Tijdzone: Pacific Standard Time (PST)
Dit is een FLEX-training: een training die zowel klassikaal als online gevolgd kan worden. Je kiest zelf de gewenste leervorm.

Europa

Duitsland

Berlijn Dit is een FLEX-training.   Tijdzone: Midden-Europese Tijd (MET) boek direct:
de online FLEX-training
de klassikale FLEX-training
Frankfurt Dit is een FLEX-training.   Tijdzone: Midden-Europese Tijd (MET) boek direct:
de online FLEX-training
de klassikale FLEX-training
Berlijn Dit is een FLEX-training.   Tijdzone: Midden-Europese Zomertijd (MEZT) boek direct:
de online FLEX-training
de klassikale FLEX-training